GEOMETRY AND TOPOLOGY PRELIMINARY EXAM, FALL 2016

Answer all six questions.

- 1. On \mathbf{R}^3 , consider the one-form $\alpha = dz ydx$. Let us define a distribution $D \subset T\mathbf{R}^3$ by $D = \ker(\alpha)$.
 - (a) Give a frame for D (vector fields in D which span the fiber at all points) and determine whether D is integrable or not.
 - (b) Give a curve whose tangent bundle lies in D and remark on why this is not a contradiction to your previous result.
- 2. Let $X = \mathbf{R}/\mathbf{Z}$ and define a cover $\{U, V\}$, where U is the image of $\{x \in \mathbf{R} \mid -\frac{1}{10} < x < \frac{6}{10}\}$ under the quotient map $\mathbf{R} \to \mathbf{R}/\mathbf{Z}$. and similarly define V by $\{x \in \mathbf{R} \mid \frac{4}{10} < x < \frac{11}{10}$. Let ρ_U, ρ_V be a partition of unity.
 - (a) Write down the associated short exact sequence of co-chain complexes and long exact sequence in (de Rham) cohomology.
 - (b) Compute the image of $1 \in H^0_{dR}(U \cap V)$ under the coboundary map. Be clear about your construction.
 - (c) Using the fact that dim $H_{dR}^k(\mathbf{R}) = \begin{cases} 1 & k = 0, \\ 0, & k > 0, \end{cases}$ compute the cohomology groups of X.
- 3. Consider the unique simplicial complex structure, defined on a square-shaped closed planar domain, determined by taking the zero-simplicies to be the four corners together with the point at the center, so five total.
 - (a) Show how to define a genus-one surface S by identifying the boundary of the square in an appropriate way.
 - (b) In the induced Δ -complex structure on S defined by the simplicial complex structure above, give (two) explicit cochain representatives of a basis for $H_1(S, \mathbf{Z})$.
 - (c) Show that the cup product of your two generators from Part (3b) generates $H_2(S, \mathbb{Z})$.

- 4. For this question, you may make use of any standard results, so long as they are referenced explicitly.
 - (a) Identify the real projective space \mathbb{RP}^2 as a quotient of an *n*-gon.
 - (b) From your answer to (1), compute the fundamental group

 $\pi_1 \mathbb{RP}^2$

and prove your answer by applying the Seifert–van Kampen theorem.

- (c) Calculate the Euler characteristic $\chi(\mathbb{RP}^2)$.
- (d) Enumerate those finite groups G which act freely on \mathbb{RP}^2 , and prove your answer.
- 5.
- (a) Calculate the dimension of the orthogonal group O(n) as a smooth manifold. Prove your answer.
- (b) Calculate the Euler characteristic $\chi(O(n))$. Prove your answer.
- (c) Prove that there is a diffeomorphism

$$\mathsf{O}(3) \cong \mathbb{Z}/2 \times \mathbb{RP}^3$$

between the orthogonal group and the disjoint union of two real projective spaces.

- 6. (a) State Sard's theorem.
 - (b) Prove that if M is compact smooth manifold with boundary ∂M , there does *not* exist a smooth map $g: M \to \partial M$ which restricts to the identity on ∂M . You may make use of any standard results in differential topology in your proof.